30 research outputs found

    A Novel Cooperative Distributed Secondary Controller for VSI and PQ Inverters of AC Microgrids

    Get PDF
    This paper proposes a novel cooperative secondary control strategy for microgrids which is fully distributed. There is a two-layered coordination, which exists between inverter based DGs of both types, i.e. Voltage Source Inverter (VSI) and Current Source Inverter (CSI), also called PQ inverter. In first layer of the proposed two-layered cooperative control strategy, VSIs will take care of the primary average voltage regulation by implementing the average consensus algorithm (ACA); then in the second layer of control, the PQ inverters will improve the voltage quality of the microgrid while maintaining the average voltage of buses at the same desired level. Zone dedication algorithm is utilized in the second layer for voltage quality purposes based on sensitivity analysis. The sensitivity analysis is based on Simplified Jacobian matrix and the result of that is used to define the zone related to each DG in the microgrid. The goal of this zone dedication is to assign loads to the DGs that can compensate their changes with less effort (generating less power) than the others. There are two major contributions in this paper; 1- PQ inverters are effectively involved to increase microgrids capacity for better power management by introducing sensitivity to the PQ inverters set-point. This is defined based on the structure of the microgrid and takes into account the location of load changes. 2- The proposed strategy not only focuses on transient response but also improves the steady state response which smooths the voltage profile of the system while keeping the average voltage at the same desired level. The algorithm has been applied to a 13 bus system with a fully distributed communication in which each VSI inverter only communicates with its immediate neighbors and each PQ inverter is only in touch with associated bordering agents. The conclusive results verify that the proposed control strategy is an effective way to control the microgrid\u27s voltage to have a smoother and stable voltage profile. The analysis also confirms the robustness of the proposed cooperative control in presence of possible time delays

    HOL-TestGen 1.8.0 User Guide

    Get PDF

    Automating Verification of State Machines with Reactive Designs and Isabelle/UTP

    Full text link
    State-machine based notations are ubiquitous in the description of component systems, particularly in the robotic domain. To ensure these systems are safe and predictable, formal verification techniques are important, and can be cost-effective if they are both automated and scalable. In this paper, we present a verification approach for a diagrammatic state machine language that utilises theorem proving and a denotational semantics based on Unifying Theories of Programming (UTP). We provide the necessary theory to underpin state machines (including induction theorems for iterative processes), mechanise an action language for states and transitions, and use these to formalise the semantics. We then describe the verification approach, which supports infinite state systems, and exemplify it with a fully automated deadlock-freedom check. The work has been mechanised in our proof tool, Isabelle/UTP, and so also illustrates the use of UTP to build practical verification tools.Comment: 18 pages, 16th Intl. Conf. on Formal Aspects of Component Software (FACS 2018), October 2018, Pohang, South Kore

    Automated Algebraic Reasoning for Collections and Local Variables with Lenses

    Get PDF
    Lenses are a useful algebraic structure for giving a unifying semantics to program variables in a variety of store models. They support efficient automated proof in the Isabelle/UTP verification framework. In this paper, we expand our lens library with (1) dynamic lenses, that support mutable indexed collections, such as arrays, and (2) symmetric lenses, that allow partitioning of a state space into disjoint local and global regions to support variable scopes. From this basis, we provide an enriched program model in Isabelle/UTP for collection variables and variable blocks. For the latter, we adopt an approach first used by Back and von Wright, and derive weakest precondition and Hoare calculi. We demonstrate several examples, including verification of insertion sor

    Hybrid Relations in Isabelle/UTP

    Get PDF
    We describe our UTP theory of hybrid relations, which extends the relational calculus with continuous variables and differential equations. This enables the use of UTP in modelling and verification of hybrid systems, supported by our mechanisation in Isabelle/UTP. The hybrid relational calculus is built upon the same foundation as the UTP’s theory of reactive processes, which is accomplished through a generalised trace algebra and a model of piecewise-continuous functions. From this foundation, we give semantics to hybrid programs, including ordinary differential equations and preemption, and show how the theory can be used to reason about sequential hybrid systems

    Suboptimal level controller for steam generators in pressurized water reactors

    No full text

    Nonconforming mesh generation for finite volume method applied to 3-D magnetic field analysis

    No full text
    An algorithm for generating and connecting 3-D nonconforming mesh with Finite Volume Method FVM is developed. The accuracy and computational performance using the nonconforming mesh technique are compared with those using the conventional conforming mesh. The algorithm is applied to solve a 3-D magnetostatic workshop problem proposed by IEEJ. It is shown that the memory requirements and CPU time using the nonconforming mesh can be decreased to about 1/2 of those using the conforming one. Moreover, the accuracy of the magnetic flux density is significantly improved

    Generalization of the Ideal Crack Model for an Arrayed Eddy Current Sensor

    No full text
    International audienc
    corecore